APM421H1: Mathematical Foundations of Quantum Mechanics


Key concepts and mathematical structure of Quantum Mechanics, with applications to topics of current interest such as quantum information theory. The core part of the course covers the following topics: Schroedinger equation, quantum observables, spectrum and evolution, motion in electro-magnetic field, angular momentum and O(3) and SU(2) groups, spin and statistics, semi-classical asymptotics, perturbation theory. More advanced topics may include: adiabatic theory and geometrical phases, Hartree-Fock theory, Bose-Einstein condensation, the second quantization, density matrix and quantum statistics, open systems and Lindblad evolution, quantum entropy, quantum channels, quantum Shannon theorems.

Distribution Requirements: 
Breadth Requirements: 
The Physical and Mathematical Universes (5)